Skip to main content
Version: dev

Field Configuration

This page explains how to configure field-level metadata for serialization in Python.

Overview

Apache Fory™ provides field-level configuration through:

  • pyfory.field(): Configure field metadata (id, nullable, ref, ignore, dynamic)
  • Type annotations: Control integer encoding (varint, fixed, tagged)
  • Optional[T]: Mark fields as nullable

This enables:

  • Tag IDs: Assign compact numeric IDs to reduce struct field meta size overhead
  • Nullability: Control whether fields can be null
  • Reference Tracking: Enable reference tracking for shared objects
  • Field Skipping: Exclude fields from serialization
  • Encoding Control: Specify how integers are encoded (varint, fixed, tagged)
  • Polymorphism: Control whether type info is written for struct fields

Basic Syntax

Use @dataclass decorator with type annotations and pyfory.field():

from dataclasses import dataclass
from typing import Optional
import pyfory

@dataclass
class Person:
name: str = pyfory.field(id=0)
age: pyfory.int32 = pyfory.field(id=1, default=0)
nickname: Optional[str] = pyfory.field(id=2, nullable=True, default=None)

The pyfory.field() Function

Use pyfory.field() to configure field-level metadata:

@dataclass
class User:
id: pyfory.int64 = pyfory.field(id=0, default=0)
name: str = pyfory.field(id=1, default="")
email: Optional[str] = pyfory.field(id=2, nullable=True, default=None)
friends: List["User"] = pyfory.field(id=3, ref=True, default_factory=list)
_cache: dict = pyfory.field(ignore=True, default_factory=dict)

Parameters

ParameterTypeDefaultDescription
idint-1Field tag ID (-1 = use field name)
nullableboolFalseWhether the field can be null
refboolFalseEnable reference tracking
ignoreboolFalseExclude field from serialization
dynamicboolNoneControl whether type info is written
defaultAnyMISSINGDefault value for the field
default_factoryCallableMISSINGFactory function for default value

Field ID (id)

Assigns a numeric ID to a field to minimize struct field meta size overhead:

@dataclass
class User:
id: pyfory.int64 = pyfory.field(id=0, default=0)
name: str = pyfory.field(id=1, default="")
age: pyfory.int32 = pyfory.field(id=2, default=0)

Benefits:

  • Smaller serialized size (numeric IDs vs field names in metadata)
  • Reduced struct field meta overhead
  • Allows renaming fields without breaking binary compatibility

Recommendation: It is recommended to configure field IDs for compatible mode since it reduces serialization cost.

Notes:

  • IDs must be unique within a class
  • IDs must be >= 0 (use -1 to use field name encoding, which is the default)
  • If not specified, field name is used in metadata (larger overhead)

Without field IDs (field names used in metadata):

@dataclass
class User:
id: pyfory.int64 = 0
name: str = ""

Nullable Fields (nullable)

Use nullable=True for fields that can be None:

from typing import Optional

@dataclass
class Record:
# Nullable string field
optional_name: Optional[str] = pyfory.field(id=0, nullable=True, default=None)

# Nullable integer field
optional_count: Optional[pyfory.int32] = pyfory.field(id=1, nullable=True, default=None)

Notes:

  • Optional[T] fields must have nullable=True
  • Non-optional fields default to nullable=False

Reference Tracking (ref)

Enable reference tracking for fields that may be shared or circular:

@dataclass
class RefOuter:
# Both fields may point to the same inner object
inner1: Optional[RefInner] = pyfory.field(id=0, ref=True, nullable=True, default=None)
inner2: Optional[RefInner] = pyfory.field(id=1, ref=True, nullable=True, default=None)


@dataclass
class CircularRef:
name: str = pyfory.field(id=0, default="")
# Self-referencing field for circular references
self_ref: Optional["CircularRef"] = pyfory.field(id=1, ref=True, nullable=True, default=None)

Use Cases:

  • Enable for fields that may be circular or shared
  • When the same object is referenced from multiple fields

Notes:

  • Reference tracking only takes effect when Fory(ref=True) is set globally
  • Field-level ref=True AND global ref=True must both be enabled

Skipping Fields (ignore)

Exclude fields from serialization:

@dataclass
class User:
id: pyfory.int64 = pyfory.field(id=0, default=0)
name: str = pyfory.field(id=1, default="")
# Not serialized
_cache: dict = pyfory.field(ignore=True, default_factory=dict)
_internal_state: str = pyfory.field(ignore=True, default="")

Dynamic Fields (dynamic)

Control whether type information is written for struct fields. This is essential for polymorphism support:

from abc import ABC, abstractmethod

class Shape(ABC):
@abstractmethod
def area(self) -> float:
pass

@dataclass
class Circle(Shape):
radius: float = 0.0

def area(self) -> float:
return 3.14159 * self.radius * self.radius

@dataclass
class Container:
# Abstract class: dynamic is always True (type info written)
shape: Shape = pyfory.field(id=0)

# Force type info for concrete type (support runtime subtypes)
circle: Circle = pyfory.field(id=1, dynamic=True)

# Skip type info for concrete type (use declared type directly)
fixed_circle: Circle = pyfory.field(id=2, dynamic=False)

Default Behavior:

ModeAbstract ClassConcrete Object TypesNumeric/str/time Types
Native modeTrueTrueFalse
Xlang modeTrueFalseFalse

Notes:

  • Abstract classes: dynamic is always True (type info must be written)
  • Native mode: dynamic defaults to True for object types, False for numeric/str/time types
  • Xlang mode: dynamic defaults to False for concrete types
  • Use dynamic=True when a concrete field may hold subclass instances
  • Use dynamic=False for performance optimization when type is known

Integer Type Annotations

Fory provides type annotations to control integer encoding:

Signed Integers

@dataclass
class SignedIntegers:
byte_val: pyfory.int8 = 0 # 8-bit signed
short_val: pyfory.int16 = 0 # 16-bit signed
int_val: pyfory.int32 = 0 # 32-bit signed (varint encoding)
long_val: pyfory.int64 = 0 # 64-bit signed (varint encoding)

Unsigned Integers

@dataclass
class UnsignedIntegers:
# Fixed-size encoding
u8_val: pyfory.uint8 = 0 # 8-bit unsigned (fixed)
u16_val: pyfory.uint16 = 0 # 16-bit unsigned (fixed)

# Variable-length encoding (default for u32/u64)
u32_var: pyfory.uint32 = 0 # 32-bit unsigned (varint)
u64_var: pyfory.uint64 = 0 # 64-bit unsigned (varint)

# Explicit fixed-size encoding
u32_fixed: pyfory.fixed_uint32 = 0 # 32-bit unsigned (fixed 4 bytes)
u64_fixed: pyfory.fixed_uint64 = 0 # 64-bit unsigned (fixed 8 bytes)

# Tagged encoding (includes type tag)
u64_tagged: pyfory.tagged_uint64 = 0 # 64-bit unsigned (tagged)

Floating Point

@dataclass
class FloatingPoint:
float_val: pyfory.float32 = 0.0 # 32-bit float
double_val: pyfory.float64 = 0.0 # 64-bit double

Encoding Summary

TypeEncodingSize
pyfory.int8fixed1 byte
pyfory.int16fixed2 bytes
pyfory.int32varint1-5 bytes
pyfory.int64varint1-10 bytes
pyfory.uint8fixed1 byte
pyfory.uint16fixed2 bytes
pyfory.uint32varint1-5 bytes
pyfory.uint64varint1-10 bytes
pyfory.fixed_uint32fixed4 bytes
pyfory.fixed_uint64fixed8 bytes
pyfory.tagged_uint64tagged1-9 bytes
pyfory.float32fixed4 bytes
pyfory.float64fixed8 bytes

When to Use:

  • varint: Best for values that are often small (default for int32/int64/uint32/uint64)
  • fixed: Best for values that use full range (e.g., timestamps, hashes)
  • tagged: When type information needs to be preserved (uint64 only)

Complete Example

from dataclasses import dataclass
from typing import Optional, List, Dict, Set
import pyfory


@dataclass
class Document:
# Fields with tag IDs (recommended for compatible mode)
title: str = pyfory.field(id=0, default="")
version: pyfory.int32 = pyfory.field(id=1, default=0)

# Nullable field
description: Optional[str] = pyfory.field(id=2, nullable=True, default=None)

# Collection fields
tags: List[str] = pyfory.field(id=3, default_factory=list)
metadata: Dict[str, str] = pyfory.field(id=4, default_factory=dict)
categories: Set[str] = pyfory.field(id=5, default_factory=set)

# Unsigned integers with different encodings
view_count: pyfory.uint64 = pyfory.field(id=6, default=0) # varint encoding
file_size: pyfory.fixed_uint64 = pyfory.field(id=7, default=0) # fixed encoding
checksum: pyfory.tagged_uint64 = pyfory.field(id=8, default=0) # tagged encoding

# Reference-tracked field for shared/circular references
parent: Optional["Document"] = pyfory.field(id=9, ref=True, nullable=True, default=None)

# Ignored field (not serialized)
_cache: dict = pyfory.field(ignore=True, default_factory=dict)


def main():
fory = pyfory.Fory(xlang=True, compatible=True, ref=True)
fory.register_type(Document, type_id=100)

doc = Document(
title="My Document",
version=1,
description="A sample document",
tags=["tag1", "tag2"],
metadata={"key": "value"},
categories={"cat1"},
view_count=42,
file_size=1024,
checksum=123456789,
parent=None,
)

# Serialize
data = fory.serialize(doc)

# Deserialize
decoded = fory.deserialize(data)
assert decoded.title == doc.title
assert decoded.version == doc.version


if __name__ == "__main__":
main()

Cross-Language Compatibility

When serializing data to be read by other languages (Java, Rust, C++, Go), use field IDs and matching type annotations:

@dataclass
class CrossLangData:
# Use field IDs for cross-language compatibility
int_var: pyfory.int32 = pyfory.field(id=0, default=0)
long_fixed: pyfory.fixed_uint64 = pyfory.field(id=1, default=0)
long_tagged: pyfory.tagged_uint64 = pyfory.field(id=2, default=0)
optional_value: Optional[str] = pyfory.field(id=3, nullable=True, default=None)

Schema Evolution

Compatible mode supports schema evolution. It is recommended to configure field IDs to reduce serialization cost:

# Version 1
@dataclass
class DataV1:
id: pyfory.int64 = pyfory.field(id=0, default=0)
name: str = pyfory.field(id=1, default="")


# Version 2: Added new field
@dataclass
class DataV2:
id: pyfory.int64 = pyfory.field(id=0, default=0)
name: str = pyfory.field(id=1, default="")
email: Optional[str] = pyfory.field(id=2, nullable=True, default=None) # New field

Data serialized with V1 can be deserialized with V2 (new field will be None).

Alternatively, field IDs can be omitted (field names will be used in metadata with larger overhead):

@dataclass
class Data:
id: pyfory.int64 = 0
name: str = ""

Native Mode vs Xlang Mode

Field configuration behaves differently depending on the serialization mode:

Native Mode (Python-only)

Native mode has relaxed default values for maximum compatibility:

  • Nullable: str and numeric types are non-nullable by default unless Optional is used
  • Ref tracking: Enabled by default for object references (except str and numeric types)

In native mode, you typically don't need to configure field annotations unless you want to:

  • Reduce serialized size by using field IDs
  • Optimize performance by disabling unnecessary ref tracking
# Native mode: works without field configuration
@dataclass
class User:
id: int = 0
name: str = ""
tags: List[str] = None

Xlang Mode (Cross-language)

Xlang mode has stricter default values due to type system differences between languages:

  • Nullable: Fields are non-nullable by default (nullable=False)
  • Ref tracking: Disabled by default (ref=False)

In xlang mode, you need to configure fields when:

  • A field can be None (use Optional[T] with nullable=True)
  • A field needs reference tracking for shared/circular objects (use ref=True)
  • Integer types need specific encoding for cross-language compatibility
  • You want to reduce metadata size (use field IDs)
# Xlang mode: explicit configuration required for nullable/ref fields
@dataclass
class User:
id: pyfory.int64 = pyfory.field(id=0, default=0)
name: str = pyfory.field(id=1, default="")
email: Optional[str] = pyfory.field(id=2, nullable=True, default=None) # Must declare nullable
friend: Optional["User"] = pyfory.field(id=3, ref=True, nullable=True, default=None) # Must declare ref

Default Values Summary

OptionNative Mode DefaultXlang Mode Default
nullableFalse for str/numeric; others nullable by defaultFalse
refTrue (except str and numeric types)False
dynamicTrue (except numeric/str/time types)False (concrete)

Best Practices

  1. Configure field IDs: Recommended for compatible mode to reduce serialization cost
  2. Use Optional[T] with nullable=True: Required for nullable fields in xlang mode
  3. Enable ref tracking for shared objects: Use ref=True when objects are shared or circular
  4. Use ignore=True for sensitive data: Passwords, tokens, internal state
  5. Choose appropriate encoding: varint for small values, fixed for full-range values
  6. Keep IDs stable: Once assigned, don't change field IDs

Options Reference

ConfigurationDescription
pyfory.field(id=N)Field tag ID to reduce metadata size
pyfory.field(nullable=True)Mark field as nullable
pyfory.field(ref=True)Enable reference tracking
pyfory.field(ignore=True)Exclude field from serialization
pyfory.field(dynamic=True)Force type info to be written
pyfory.field(dynamic=False)Skip type info (use declared type)
Optional[T]Type hint for nullable fields
pyfory.int32, pyfory.int64Signed integers (varint encoding)
pyfory.uint32, pyfory.uint64Unsigned integers (varint encoding)
pyfory.fixed_uint32, pyfory.fixed_uint64Fixed-size unsigned
pyfory.tagged_uint64Tagged encoding for uint64